
An experimental study of distributed algorithms for

shortest paths on real networks?

Gianlorenzo D’Angelo, Daniele Frigioni, and Vinicio Maurizio

Dipartimento di Ingegneria Elettrica e dell’Informazione, Università dell’Aquila, I-67040 Via Gronchi 18,
L’Aquila – Italy. email{gianlorenzo.dangelo, daniele.frigioni}@univaq.it, vinicio.maurizio@cc.univaq.it

1 Introduction

In this paper, we study the problem of dynamically update all-pairs shortest paths in
a distributed network while edge update operations occur to the network. This prob-
lem is considered crucial in today’s practical applications. The algorithms for computing
shortest-paths used in computer networks are classified as distance-vector, as for example
the classical Bellman-Ford method [8], and link-state, as for example the OSPF proto-
col widely used in the Internet (e.g., see [9]). The main drawbacks of distance-vector
algorithms, when used in a dynamic environment, are the well-known looping and count-
to-infinity phenomena (e.g., see [2]) that lead to a very slow convergence. A loop is a
path induced by the routing table entries, such that the path visits the same node more
than once before reaching the intended destination. A node “counts to infinity” when it
increments its distance to a destination until it reaches a maximum distance value.

A number of solutions have been proposed in the literature to update distributed
shortest paths [4–6, 10]. Most of them are distance-vector algorithms that rely on the
classical Bellman-Ford method which has been shown to converge to the correct dis-
tances if the edge weights stabilize and all cycles have positive lengths [2]. However, the
convergence can be very slow due to the looping and count-to-infinity phenomena. Fur-
thermore, several known algorithms are not able to concurrently update shortest paths
as those in [5, 10], that is, they work under the assumption that before dealing with an
edge operation, the algorithm for the previous operation has to be terminated. This is a
limitation in real networks, where an edge change can occur while another change is un-
der processing. There are also algorithms which are able to concurrently update shortest
paths as those in [3, 6], but they present one or more of the following drawbacks: they
suffer of the looping and count-to-infinity phenomena; they are not able to work in the
realistic case where an arbitrary sequence of edge change operations can occur to the
network in an unpredictable way.

In [4] an experimental study has been performed in the OMNeT++ simulation envi-
ronment [1] to check the performances of a new algorithm, proposed in the same paper,
against the classical Bellman-Ford method. In this paper, we extend the above experimen-
tal study by implementing DUAL [5] (a part of CISCO’s widely used EIGRP protocol),
which is perhaps the best known algorithm, and experimenting it in the same environ-
ment. We performed several tests on real-world data [7] and randomly generated update
sequences. These experiments show that algorithm in [4] outperforms both Bellman-Ford
and DUAL in terms of both number of messages and space occupancy per node.

? Support for the IPv4 Routed/24 Topology Dataset is provided by National Science Foundation, US Department
of Homeland Security, WIDE Project, Cisco Systems, and CAIDA.



2 Implemented algorithms

In this Section we briefly describe the three algorithms we have considered for our experi-
mental study: the classical Bellman-Ford method denoted as BF; the algorithm proposed
in [5] denoted as DUAL; the algorithm proposed in [4] denoted as ConFu.

Description of BF. In BF, a node v updates its estimated distance to a node s, by
simply executing the iteration D[v, s] := minu∈N(v){w(v, u) + D[u, s]}, using the last esti-
mated distance D[u, s] received from a neighbor u ∈ N(v) and the latest status of its links.
Eventually, node v transmits its new estimated distance to nodes in N(v). BF requires
to store the last estimated distance vector {D[u, s] | s ∈ V } received from each neighbor
u ∈ N(v).

Description of DUAL. In DUAL, each node v maintains, for each destination s, a set
of neighbors called the feasible successor set F [v, s]. F [v, s] is computed using a feasibility
condition involving feasible distances from each node in N(v) to s, hence node v needs to
store the distance from u to s, for each u ∈ N(v) and each destination s. If the neighbor
u, through which the distance to s is minimum, is in F [v, s], then u is chosen as successor
to s. If F [v, s] does not include u, then v initiates a synchronous update procedure, known
as a diffusing computation. v sends queries to all its neighbors with its distance through
the current successor. From this point onwards v does not change its successor to s until
the diffusing computation terminates. When a neighbor u ∈ N(v) receives a queries, it
updates F [u, s]. If u has a successor to s after such update, it replies to the query by
sending its own distance to s. Otherwise, u continues the diffuse computation: it sends
out queries and waits for the replies from its neighbors before replying to v’s original
query. If there are concurrent updates, the node uses a finite state machine to process
these multiple updates sequentially.

Description of ConFu. ConFu assumes that each node of G knows the identity of ev-
ery other node of G, the identity of all its neighbors and the weights of the edges incident
to it. Each node v maintains its own routing table that has one entry for each s ∈ V , which
consists of two fields: (i) D[v, s], the estimated distance between nodes v and s in G; (ii)
VIA[v, s] ≡ {vi ∈ N(v) | D[v, s] = w(v, vi) + D[vi, s]}, the estimated via from v to s. Given
a destination s the set VIA[v, s] contains at most deg(v) elements. Algorithm ConFu con-
sists of three procedures denoted as Decrease, Increase and Dist and it is described
wrt a source s ∈ V . The algorithm starts every time an operation ci on edge (xi, yi) is
performed. Operation ci is detected only by nodes xi and yi. If ci is a weight increase
(weight decrease) operation, xi sends the message increase(xi, s) (decrease(xi, s, D[xi, s]))
to yi and yi sends the message increase(yi, s) (decrease(yi, s, D[yi, s])) to xi, for each s ∈ V .
If a node v receives decrease(u, s, D[u, s]), then it performs procedure Decrease, that re-
laxes edge (u, v). In particular, if w(v, u) + D[u, s] < D[v, s], then v updates D[v, s] and
VIA[v, s], and propagates the updated values to nodes in N(v). If w(v, u)+D[u, s] = D[v, s],
then u is a new estimated via for v wrt s, and hence v adds u to VIA[v, s]. If a node v
receives increase(u, s), then it performs procedure Increase which checks whether the
message comes from a node in VIA[v, s]. In the affirmative case, v needs to remove u
from VIA[v, s]. To this aim, v reduces its VIA. As a consequence, VIA[v, s] may become
empty. In this case, v computes the new estimated distance and via of v to s. To do this,
v asks to each node vi ∈ N(v) for its current estimated distance, by sending message
get-dist(v, s) to vi. When vi receives get-dist(v, s) by v, it performs procedure Dist which

2



sends D[vi, s] to v, unless one of the following two conditions holds: 1) VIA[vi, s] ≡ {v};
2) vi is updating its routing table wrt destination s. If this is true, then vi sends ∞ to v.
When v receives the answers to the get-dist messages by all its neighbors, it computes the
new estimated distance and via to s. Now, if the estimated distance has been increased, v
sends an increase message to its neighbors. In any case, v sends to its neighbors decrease,
to communicate them D[v, s]. In fact, at some point, v could have sent ∞ to a neighbor
vj. Then, vj receives the message sent by v, and it performs procedure Decrease to
check whether D[v, s] can determine an improvement to the value of D[vj, s].

3 Experimental analysis

Experimental environment. The experiments have been carried out on a workstation
equipped with a 2,66 GHz processor and 8Gb RAM. The experiments consist of simu-
lations within the OMNeT++ environment, version 4.0p1 [1]. OMNeT++ is an object-
oriented modular discrete event network simulator, useful to model protocols, telecom-
munication networks, multiprocessors and other distributed systems. In our model, we
defined a basic module node to represent a node in the network. A node v has a commu-
nication gate for each node in N(v). Each node can send messages to a destination node
through a channel which is a module that connects gates of different nodes. A channel
connects exactly two gates and represents an edge between two nodes. We associate two
parameters per channel: a weight and a delay. The former represents the cost of the edge
in the graph, and the latter simulates a finite but not null transmission time.

Executed tests. For our experiments we used real-world data consisting of CAIDA IPv4
topology dataset [7]. CAIDA (Cooperative Association for Internet Data Analysis) is an
association which provides data and tools for the analysis of the Internet infrastructure.
The CAIDA dataset is collected by a globally distributed set of monitors which collect
data by sending probe messages to randomly selected IP addresses. For each destination
selected, the path from the source monitor to the destination is collected, in particular,
data collected for each path includes the set of IP addresses of the hops which form the
path and the Round Trip Times (RTT) of both intermediate hops and the destination.

We parsed the files provided by CAIDA to obtain a weighted undirected graph GIP

where a node represents an IP address contained in the dataset, edges represent links
among hops and weights are given by RTTs. Graph GIP consists of n ≈ 35000 nodes,
hence we cannot use it for the experiments, as the amount of memory required to store the
routing tables of all the nodes is O(n2 ·maxdeg), where maxdeg is the maximum degree of a
node in the graph. Hence, we performed our tests on connected subgraphs of GIP induced
by the settled nodes of a breadth first search starting from a node taken at random. We
generated a set of different tests, each test consists of a dynamic graph characterized by:
a subgraph of GIP of 5000 nodes, a set of k ∈ {5, 10, . . . , 100} concurrent edge updates.
An edge update consists of multiplying the weight of a random selected edge by a value
randomly chosen in [1/2, 3/2]. For each test, we performed 5 different experiments and
we reported average values.

Analysis. BF is always outperformed by both ConFu and DUAL. In fact, it sends
a number of messages that is a factor between 32 and 295 (24 and 166, resp.) higher
than the number of messages sent by ConFu (DUAL, resp.). Moreover, in the tests
for k ∈ {25, 30, . . . , 100} BF always falls in looping, while ConFu and DUAL always
converge to the correct routing tables.

3



number of modifications

201816141210864

1.8
1.75
1.7

1.65
1.6

1.55
1.5

1.45
1.4

1.35
1.3

DUAL
ConFu

number of modifications

201816141210864

3.5e+06

3e+06

2.5e+06

2e+06

1.5e+06

1e+06

500000

0

Fig. 1. Left: Number of messages sent by ConFu and DUAL on subgraphs of GIP . Right: Ratio between the
number of messages sent by DUAL and ConFu on subgraphs of GIP

In Fig. 1 (left) we report the number of messages sent by ConFu and DUAL on
subgraphs of GIP having 5000 nodes and an average value of 6109 edges in the cases
where the number k of modifications is in {5, 10, 15, 20}. The figure shows that ConFu
always sends less messages than DUAL. The tests for k ∈ {25, 30, . . . , 100} are not
reported as the inferred results do not change. Fig. 1 (right) shows the results of Fig. 1
(left) from a different point of view, that is, it shows the ratio between the number of
messages sent by DUAL and ConFu. It is worth noting that the ratio is within 1.32
and 1.78 which means that DUAL sends a number of messages which is between 32%
and 78% higher than the number of messages sent by ConFu.

To conclude, we experimentally analyze the space occupancy per node. DUAL re-
quires a node v to store, for each destination, the estimated distance given by each of its
neighbors, while ConFu only needs the estimated distance of v and the set VIA, for each
destination. Since in these sparse graphs it is not common to have more than one via to
a destination, the memory requirement of ConFu is much smaller than that of DUAL.
In particular, ConFu requires in average 40000 bytes per node and 40088 bytes per node
in the worst case. DUAL requires in average 186090 bytes per node and 5.2M bytes per
node in the worst case. This implies that DUAL requires in average 4.65 times the space
required by ConFu and 130 times the space required by ConFu in the worst case.

References

1. Omnet++: the discrete event simulation environment. http://www.omnetpp.org/.
2. D. Bertsekas and R. Gallager. Data Networks. Prentice Hall International, 1992.
3. S. Cicerone, G. D’Angelo, G. Di Stefano, and D. Frigioni. Partially dynamic efficient algorithms for distributed

shortest paths. Theoretical Comp. Science, 411:1013–1037, 2010.
4. S. Cicerone, G. D’Angelo, G. Di Stefano, D. Frigioni, and V. Maurizio. A new fully dynamic algorithm for

distributed shortest paths and its experimental evaluation. In Proc. Int. Symp. on Experimental Algorithms,
volume 6049 of LNCS, pages 59–70, 2010.

5. J. J. Garcia-Lunes-Aceves. Loop-free routing using diffusing computations. IEEE/ACM Transactions on
Networking, 1(1):130–141, 1993.

6. P. A. Humblet. Another adaptive distributed shortest path algorithm. IEEE Transactions on Communica-
tions, 39(6):995–1002, Apr. 1991.

7. Y. Hyun, B. Huffaker, D. Andersen, E. Aben, C. Shannon, M. Luckie, and K. Claffy. The CAIDA IPv4
routed/24 topology dataset. http://www.caida.org/data/active/ipv4 routed 24 topology dataset.xml.

8. J. McQuillan. Adaptive routing algorithms for distributed computer networks. Technical Report BBN Report
2831, Cambridge, MA, 1974.

9. J. T. Moy. OSPF - Anatomy of an Internet routing protocol. Addison-Wesley, 1998.
10. K. V. S. Ramarao and S. Venkatesan. On finding and updating shortest paths distributively. Journal of

Algorithms, 13:235–257, 1992.

4


